Dkk1 Regulates Ventral Midbrain Dopaminergic Differentiation and Morphogenesis
نویسندگان
چکیده
Dickkopf1 (Dkk1) is a Wnt/β-catenin inhibitor that participates in many processes during embryonic development. One of its roles during embryogenesis is to induce head formation, since Dkk1-null mice lack head structures anterior to midbrain. The Wnt/β-catenin pathway is also known to regulate different aspects of ventral midbrain (VM) dopaminergic (DA) neuron development and, in vitro, Dkk1-mediated inhibition of the Wnt/β-catenin pathway improves the DA differentiation in mouse embryonic stem cells (mESC). However, the in vivo function of Dkk1 on the development of midbrain DA neurons remains to be elucidated. Here we examined Dkk1(+/-) embryos and found that Dkk1 is required for the differentiation of DA precursors/neuroblasts into DA neurons at E13.5. This deficit persisted until E17.5, when a defect in the number and distribution of VM DA neurons was detected. Furthermore, analysis of the few Dkk1(-/-) embryos that survived until E17.5 revealed a more severe loss of midbrain DA neurons and morphogenesis defects. Our results thus show that Dkk1 is required for midbrain DA differentiation and morphogenesis.
منابع مشابه
Wnt5a Regulates Ventral Midbrain Morphogenesis and the Development of A9–A10 Dopaminergic Cells In Vivo
Wnt5a is a morphogen that activates the Wnt/planar cell polarity (PCP) pathway and serves multiple functions during development. PCP signaling controls the orientation of cells within an epithelial plane as well as convergent extension (CE) movements. Wnt5a was previously reported to promote differentiation of A9-10 dopaminergic (DA) precursors in vitro. However, the signaling mechanism in DA c...
متن کاملCorrection: Expression of Dickkopf-1 and Beta-Catenin Related to the Prognosis of Breast Cancer Patients with Triple Negative Phenotype
BACKGROUND AND AIM We investigated the prognostic importance of dickkopf-1(DKK1) and beta-catenin expression in triple negative breast cancers. METHODS The expression of DKK1 and beta-catenin was evaluated in breast cell lines using RT-PCR and western blot. Immunohistochemistry was used to characterize the expression pattern of DKK1 and beta-catenin in 85 triple negative breast cancers and pr...
متن کاملA Wnt signal regulates stem cell fate and differentiation in vivo.
Our knowledge about the normal generation of midbrain dopaminergic neurons in vivois still rudimentary, despite many attempts to recapitulate the underlying events in vitro. Because the loss of these neurons is implicated in Parkinson's disease, this lack of information is one of the major drawbacks in the development of better therapies for this severe human neurological disorder. Recently, su...
متن کاملDevelopment of the mesencephalic dopaminergic neuron system is compromised in the absence of neurogenin 2.
Neurogenin 2 (Ngn2) is a proneural gene involved in neuronal differentiation and subtype specification in various regions of the nervous system. In the ventral midbrain, Ngn2 is expressed in a spatiotemporal pattern that correlates with the generation of mesencephalic dopaminergic (mesDA) neurons. We show here that lack of Ngn2 impairs the development of mesDA neurons, such that less than half ...
متن کاملWnt2 regulates progenitor proliferation in the developing ventral midbrain.
Wnts are secreted, lipidated proteins that regulate multiple aspects of brain development, including dopaminergic neuron development. In this study, we perform the first purification and signaling analysis of Wnt2 and define the function of Wnt2 in ventral midbrain precursor cultures, as well as in Wnt2-null mice in vivo. We found that purified Wnt2 induces the phosphorylation of both Lrp5/6 an...
متن کامل